Fire Earth

Earth is fighting to stay alive. Mass dieoffs, triggered by anthropogenic assault and fallout of planetary defense systems offsetting the impact, could begin anytime!

Posts Tagged ‘GRACE’

Greenland Ice Sheet Losing Ice Mass

Posted by feww on March 24, 2010

Greenland Ice Sheet Losing Ice Mass on Northwest Coast: International Study

Greenland ice sheet lost about 1,604 km³ (385 cubic miles) of ice between April 2002 and February 2009, an amount equivalent to about 0.5 mm of sea-level rise each year, researchers say.

Greenland ice sheet has been losing an increasing amount of ice since 2000. Previously most of the loss was concentrated in its southern region, but now the loss is occurring in its northwest coast, a new international study says.


Click image to enlarge.


Greenland Melt Extent, 2005: Konrad Steffen and Russell Huff – Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder

Researchers from Denmark Technical Institute’s National Space Institute in Copenhagen and the University of Colorado at Boulder say the ice-loss acceleration started moving up the northwest coast of Greenland in late 2005. “The team drew their conclusions by comparing data from NASA’s Gravity and Recovery Climate Experiment satellite system, or GRACE, with continuous GPS measurements made from long-term sites on bedrock on the edges of the ice sheet.”

The uplift rates of about 4 centimeters  were discovered close to the Thule Air Base on Greenland’s northwest coast between October 2005 to August 2009. “Although the low resolution of GRACE—a swath of about 155 miles, or 250 kilometers across—is not precise enough to pinpoint the source of the ice loss, the fact that the ice sheet is losing mass nearer to the ice sheet margins suggests the flows of Greenland outlet glaciers there are increasing in velocity, said the study authors.” The report said

“When we look at the monthly values from GRACE, the ice mass loss has been very dramatic along the northwest coast of Greenland,” said CU-Boulder physics Professor and study co-author John Wahr, also a fellow at CU-Boulder’s Cooperative Institute for Research in Environmental Sciences.

“This is a phenomenon that was undocumented before this study,” said Wahr. “Our speculation is that some of the big glaciers in this region are sliding downhill faster and dumping more ice in the ocean.”

“These changes on the Greenland ice sheet are happening fast, and we are definitely losing more ice mass than we had anticipated, ” said Isabella Velicogna of the University of California-Irvine, who also is a scientist at NASA’s Jet Propulsion Laboratory. “We also are seeing this ice mass loss trend in Antarctica, a sign that warming temperatures really are having an effect on ice in Earth’s cold regions.”

Click here for the rest of the report and a computer simulation of Greenland Ice Melt.

Related Links:

Posted in Ice Mass, ice-loss, ice-loss acceleration, polar ice, sea level rise | Tagged: , , , , | 1 Comment »

California Dry

Posted by feww on December 15, 2009

GRACE Reveals Major Groundwater Loss in California’s Heartland

New space observations reveal that since October 2003, the aquifers for California’s primary agricultural region — the Central Valley — and its major mountain water source — the Sierra Nevadas — have lost nearly enough water combined to fill Lake Mead, America’s largest reservoir. The findings, based on data from the NASA/German Aerospace Center Gravity Recovery and Climate Experiment (Grace), reflect California’s extended drought and increased rates of groundwater being pumped for human uses, such as irrigation.

The combined Sacramento and San Joaquin River Basins cover an area of approximately 154,000 square kilometers. They include California’s major mountain water source, the snowpack in the Sierra Nevada mountain range; and the Central Valley, the state’s primary agricultural region. Credit: UNIVERSITY of CALIFORNIA CENTER for HYDROLOGIC MODELING. Click image to enlarge.


In research being presented this week at the American Geophysical Union meeting in San Francisco, scientists from NASA and the University of California, Irvine, detailed California’s groundwater changes and outlined Grace-based research on other global aquifers. The twin Grace satellites monitor tiny month-to-month changes in Earth’s gravity field primarily caused by the movement of water in Earth’s land, ocean, ice and atmosphere reservoirs. Grace’s ability to directly ‘weigh’ changes in water content provides new insights into how Earth’s water cycle may be changing.

Combined, California’s Sacramento and San Joaquin drainage basins have shed more than 30 cubic kilometers of water since late 2003, said professor Jay Famiglietti of the University of California, Irvine. A cubic kilometer is about 264.2 billion gallons, enough to fill 400,000 Olympic-size pools. The bulk of the loss occurred in California’s agricultural Central Valley. The Central Valley receives its irrigation from a combination of groundwater pumped from wells and surface water diverted from elsewhere.

“Grace data reveal groundwater in these basins is being pumped for irrigation at rates that are not sustainable if current trends continue,” Famiglietti said. “This is leading to declining water tables, water shortages, decreasing crop sizes and continued land subsidence. The findings have major implications for the U.S. economy, as California’s Central Valley is home to one sixth of all U.S. irrigated land, and the state leads the nation in agricultural production and exports.”

“By providing data on large-scale groundwater depletion rates, Grace can help California water managers make informed decisions about allocating water resources,” said Grace Project Scientist Michael Watkins of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., which manages the mission for NASA’s Science Mission Directorate, Washington.

Trends in surface mass variations as observed by the GRACE mission over the period 2003 to 2009. The bluer tones indicate areas of mass loss, while warmer red tones indicate mass gains. Units are centimeters of equivalent surface water.


Preliminary studies show most of the water loss is coming from the more southerly located San Joaquin basin, which gets less precipitation than the Sacramento River basin farther north. Initial results suggest the Sacramento River basin is losing about 2 cubic kilometers of water a year. Surface water losses account for half of this, while groundwater losses in the northern Central Valley add another 0.6 cubic kilometers annually. The San Joaquin Basin is losing 3.5 cubic kilometers a year. Of this, more than 75 percent is the result of groundwater pumping in the southern Central Valley, primarily to irrigate crops.

Famiglietti said recent California legislation decreasing the allocation of surface waters to the San Joaquin Basin is likely to further increase the region’s reliance on groundwater for irrigation. “This suggests the decreasing groundwater storage trends seen by Grace will continue for the foreseeable future,” he said.


Observed ground water trends in the Sacramento and San Joaquin River basins, Oct. 2003 to March 2009.

The California results come just months after a team of hydrologists led by Matt Rodell of NASA’s Goddard Space Flight Center, Greenbelt, Md., found groundwater levels in northwest India have declined by 17.7 cubic kilometers per year over the past decade, a loss due almost entirely to pumping and consumption of groundwater by humans.

“California and India are just two of many regions around the world where Grace data are being used to study droughts, which can have devastating impacts on societies and cost the U.S. economy $6 to $8 billion annually,” said Rodell. Other regions under study include Australia, the Middle East – North Africa region and the southeastern United States, where Grace clearly captured the evolution of an extended drought that ended this spring. In the Middle East – North Africa region, Rodell is leading an effort to use Grace and other data to systematically map water- and weather-related variables to help assess regional water resources. Rodell added Grace may also help predict droughts, since it can identify pre-existing conditions favorable to the start of a drought, such as a deficit of water deep below the ground.


In the 66-month period analyzed, the water stored in the combined Sacramento and San Joaquin Basin decreased by more than 31 cubic kilometers, or nearly the volumne of Lake Mead. Nearly two-thirds of this came from changes in groundwater storage, primarily from the Central Valley.


NASA is working with the National Oceanic and Atmospheric Administration and the University of Nebraska-Lincoln to incorporate Grace data into NOAA’s U.S. and North American Drought Monitors, premier tools used to minimize drought impacts. The tools rely heavily on precipitation observations, but are limited by inadequate large-scale observations of soil moisture and groundwater levels. “Grace is the only satellite system that provides information on these deeper stores of water that are key indicators of long-term drought,” Rodell said.

For more on Grace, see http://www.csr.utexas.edu/grace/ and http://grace.jpl.nasa.gov/ . Other media contacts: Margaret Baguio, University of Texas Center for Space Research, 512-471-6922; Jennifer Fitzenberger, University of California, Irvine, 949-824-3969.

Summary:

The combined Sacramento and San Joaquin River Basins

  • Cover an area of approximately 154,000km²
  • Includes California’s major mountain water source, the snowpack in the Sierra Nevada mountain range
  • Includes its primary agricultural region, the Central Valley (~52,000 km²)

California’s Central Valley

  • Is one of the most productive agricultural regions in the world
  • Produces more than 250 different crops worth $17 billion per year (2002), or 8% of the food produced in the U. S. by value
  • Accounts for 1/6 of irrigated land in the U.S.
  • Supplies 1/5 of the demand for groundwater in the U.S.
  • Is the second most pumped aquifer in the U. S.

Groundwater storage changes in the Sacramento‐San Joaquin River Basins from GRACE and supplementary data, October, 2003 – March, 2009

  • In the 66 month period analyzed, the water stored in the combined Sacramento‐San Joaquin River Basin decreased by over 31 km3, or nearly the volume of Lake Mead
  • Nearly two‐thirds of this, or roughly 20 km3, came from changes in groundwater storage, primarily from the Central Valley.
  • Preliminary analyses suggest that as much as 75% of the groundwater loss is occurring in the San Joaquin River Basin, including the Tulare Lake basin, which is consistent with ground‐based observaAons and other studies.
  • Drought condiAons since 2006 have minimized groundwater recharge and have resulted in constraints on surface water allocaAons to the Central Valley, triggering a reliance on groundwater resources, parAcularly in the San Joaquin Valley
  • Groundwater is being used for irrigaAon at unsustainable rates, leading to declining water tables, decreasing crop sizes and conAnued land subsidence.
  • In the long term, conAnued reliance on groundwater will deplete criAcal reserves that buffer cuts to surface water allocaAons. ConAnued depleAons pose significant threats to food producAon in the U. S. and the state’s economy
  • Note that the trends are for the specified Ame period (October, 2003‐March, 2009). This Ame period was selected because it maximized the overlap with the other datasets used in the study.

Related Links:

Posted in California drought, california water, Central Valley irrigation, Sierra Nevada, water loss | Tagged: , , , , , | 1 Comment »

Ice Melt in Alaska, Antarctica, Greenland Accelerating

Posted by feww on December 17, 2008

2 trillion tons of ice in Alaska, Antarctica and Greenland melted since 2003, NASA says

About 2 trillion tons of ice in Alaska, Antarctica  and Greenland has melted since 2003,  NASA scientists say, due to accelerating climate change.

Analyzing data from NASA’s Gravity Recovery and Climate Experiment, GRACE, in which two orbiting satellites are used to measure the “mass balance” of a glacier, that is the net difference between ice accumulation and ice loss each year, NASA geophysicist Scott Luthcke says the losses are colossal.

“The ice tells us in a very real way how the climate is changing,” said Luthcke. “A few degrees of change [in temperature] can increase the amount of mass loss, and that contributes to sea level rise and changes in ocean current.”

Greenland has lost about 160 gigatons (one billion tons) each year for 5 consecutive years, enough to raise global sea levels about .5 mm per year,  according to another NASA researcher, Jay Zwally.

“Every few extra inches of sea level have very significant economic impacts, because they change the sea level, increase flooding and storm damage,” said Zwally. “It’s a warning sign.”

“We’re seeing the impacts of global warming in many areas of our own lives, like agriculture,” he said.

Citing the pine beetle infestation in the forests of Colorado and western Canada [how about Alaska?] he said: “[The pests] were believed to be spreading because the winter was not cold enough to kill them, and that’s destroying forests.”

Sermersuaq (Humboldt) Glacier, Greenland


acquired August 30, 2008 – NASA Earth Observatory


acquired August 30, 2000 – NASA Earth Observatory

Stretching about 90 kilometers across Kane Bassin in the Nares Strait, northwestern Greenland’s Sermersuaq Glacier, also called Humboldt Glacier, is the Northern Hemisphere’s widest tidewater glacier—a glacier that begins on land, but terminates in water. The Sermersuaq is a major source of icebergs in the strait, which connects the Lincoln Sea in the north to Baffin Bay in the south.

This pair of images shows the retreat of the Sermersuaq Glacier between 2000 and 2008. In these natural-color images from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite, the approximate terminus of the glacier on August 31, 2000 (bottom image), is traced with a yellow line on an image from August 30, 2008 (top). Although the southern part of the terminus showed little change during the period, significant retreat is visible in the northern part, where a fast-flowing ice stream is located. In both images, the deep blue waters of Kane Bassin are littered with ice, which may include icebergs and sea ice.

Having a “toe” in the water adds complexity to the natural cycle of advance and retreat that a glacier experiences in response to climate changes. The behavior of tidewater glaciers is affected not only by melting and snowfall on land, but also by the shape of the fjord or coastline where the glacier enters the water, the depth of the water, tides, and the thickness of the moraine (a shoal of sediment and rock) that builds up underwater at the tip of the glacier.

Even in the absence of human-caused climate change, tidewater glaciers naturally experience century-long cycles that include phases of rapid retreat. After decades of slow advance, the terminus of the glacier eventually becomes grounded on its own moraine. The shoal can become so thick that it stops icebergs from calving for extended spans of time. The support of the shoal allows the glacier to grow larger than it could if it were free-floating.

A small amount of thinning or retreat at the terminus can trigger a rapid retreat once the glacier—too large to float—is ungrounded from the shoal. The initial thinning or retreat of a tidewater glacier may result from a warming climate, but the extremely rapid retreat thereafter has as much to do with topography and the laws of physics as it does with the current climate.

NASA image created by Jesse Allen, using data obtained from the Goddard Level 1 and Atmospheric Archive and Distribution System (LAADS). Caption by Rebecca Lindsey.

Instrument: Terra – MODIS
Date Acquired: August 30, 2008

Posted in Colorado forests, pine beetle infestation, Sermersuaq Glacier, western Canada | Tagged: , , , , | 3 Comments »